type I error - translation to Αγγλικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

type I error - translation to Αγγλικά

CONCEPTS FROM STATISTICAL HYPOTHESIS TESTING
Type I error; Type II error; Type I error rate; Type 1 error; Type 2 error; Failed to show; Type one error; Type II Error; Type I Error; Error of the first kind; Error of the second kind; Error of the third kind; Error of the fourth kind; Type I and Type II errors; Α error; Β error; A error; B error; Alpha level; Type I errors; Type 1 and type 2 error; False Alarm Rate; Alpha error; Beta error; Level of significance; Types of error; Type I and type II error; Type i and type ii error; Type 1 and Type 2 errors; Type II errors; False alarm rate
  • The results obtained from negative sample (left curve) overlap with the results obtained from positive samples (right curve). By moving the result cutoff value (vertical bar), the rate of false positives (FP) can be decreased, at the cost of raising the number of false negatives (FN), or vice versa (TP = True Positives, TPR = True Positive Rate, FPR = False Positive Rate, TN = True Negatives).

type I error         

<i>общая лексикаi>

ошибка первого рода

type I error         
ошибка первого типа; ошибка, связанная с отрицанием нулевой гипотезы в случае её достоверности.
error of the second kind         

<i>общая лексикаi>

ошибка второго рода

Ορισμός

ляпсус
м.
Ошибка, оговорка, досадный промах (обычно в устной речи и на письме).

Βικιπαίδεια

Type I and type II errors

In statistical hypothesis testing, a type I error is the mistaken rejection of an actually true null hypothesis (also known as a "false positive" finding or conclusion; example: "an innocent person is convicted"), while a type II error is the failure to reject a null hypothesis that is actually false (also known as a "false negative" finding or conclusion; example: "a guilty person is not convicted"). Much of statistical theory revolves around the minimization of one or both of these errors, though the complete elimination of either is a statistical impossibility if the outcome is not determined by a known, observable causal process. By selecting a low threshold (cut-off) value and modifying the alpha (α) level, the quality of the hypothesis test can be increased. The knowledge of type I errors and type II errors is widely used in medical science, biometrics and computer science.

Intuitively, type I errors can be thought of as errors of commission (i.e., the researcher unluckily concludes that something is the fact). For instance, consider a study where researchers compare a drug with a placebo. If the patients who are given the drug get better than the patients given the placebo by chance, it may appear that the drug is effective, but in fact the conclusion is incorrect. In reverse, type II errors are errors of omission. In the example above, if the patients who got the drug did not get better at a higher rate than the ones who got the placebo, but this was a random fluke, that would be a type II error. The consequence of a type II error depends on the size and direction of the missed determination and the circumstances. An expensive cure for one in a million patients may be inconsequential even if it truly is a cure.

Μετάφραση του &#39type I error&#39 σε Ρωσικά